
www.elsevier.com/locate/jcp

Journal of Computational Physics 192 (2003) 406–421
Numerical methods for the solution of partial
differential equations of fractional order

V.E. Lynch *, B.A. Carreras, D. del-Castillo-Negrete,
K.M. Ferreira-Mejias, H.R. Hicks

Oak Ridge National Laboratory, Computational Sciences and Engineering, P.O. Box 2009, Oak Ridge, TN 37831 8070, USA

Received 31 January 2003; received in revised form 25 June 2003; accepted 10 July 2003
Abstract

Anomalous diffusion is a possible mechanism underlying plasma transport in magnetically confined plasmas. To

model this transport mechanism, fractional order space derivative operators can be used. Here, the numerical properties

of partial differential equations of fractional order a; 16 a6 2, are studied. Two numerical schemes, an explicit and a

semi-implicit one, are used in solving these equations. Two different discretization methods of the fractional derivative

operator have also been used. The accuracy and stability of these methods are investigated for several standard types of

problems involving partial differential equations of fractional order.
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1. Introduction

Brownian motion of particles results in molecular diffusion, which is characterized by the moments of

the distribution of particle positions evolving in time as hx2ðtÞ � hxðtÞi2i ¼ Dt2m with 2m ¼ 1. This process is

called normal diffusion. The scaling with time of moments of tracer particle distributions has been studied

for a variety of different dynamical conditions. It is not always found that particle diffusion is the dominant

transport mechanism. When a scaling with time like the one described above is found but 2m 6¼ 1, the

process is called anomalous diffusion [1]. Anomalous diffusion may be a consequence of particles being

trapped in certain positions along the trajectory, then we have 2m < 1 and the process is called subdiffusion.

If there are jets of particles along the trajectory, 2m > 1 and the process is superdiffusion. See for example
[2]. A continuous random walk with steps obeying a Levy distribution [3] is one example of superdiffusion.

In magnetically confined plasmas, transport is a complex process [4]. The basic mechanisms underlying

plasma transport are not yet understood. By looking at several possible turbulence mechanisms in three-
*Corresponding author.

E-mail address: lynchve@ornl.gov (V.E. Lynch).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcp.2003.07.008

mail to: lynchve@ornl.gov


407 V.E. Lynch et al. / Journal of Computational Physics 192 (2003) 406–421
dimensional calculations, it has been found that all of them lead to anomalous particle diffusion [5,6]. This

result may be consistent with some experimental observations that are difficult to reconcile with a local

diffusion process [4,7,8]. Therefore, anomalous diffusion may be present in plasma transport.
A study [5] of tracer particle evolution in three-dimensional pressure-gradient-driven plasma turbulence

model has shown the existence of a regime with self-similar tracer particle distribution. In this regime, the

moments of the tracer particle displacement scales with an exponent m > 0:5 indicating that the tracer

particle transport is not diffusive but superdiffusive. Furthermore, the calculated tracer particle distribution

has the characteristic properties of a Levy distribution with an algebraic decaying tail. This is further

evidence of the non-diffusive character of the process.

The cause of the anomalous diffusion is the existence of long-range correlations in the dynamics and/or

the presence of anomalously large particle displacements or trapping. From the latter perspective, the
tracer particle transport in a plasma turbulence model can be interpreted as a random walk in which the

particles can be trapped in eddies for a certain time and then they jump through successive hyperbolic

points of the eddies. The trapping times and the displacements are described by broad probability func-

tions with algebraic tails. In particular, for systems that exhibit anomalous diffusion caused by Levy flights

[1], the probability distribution of particle displacements, pðlÞ, is broad in the sense that hl2i ¼ 1. As it is

well known, for these kinds of systems the central limit theorem cannot be applied; and as N ! 1, the

probability distribution function of x ¼
PN

n ln, rather than being Gaussian, is a a-stable Levy distribution

[9].
In deriving macroscopic equations for plasma transport from plasma turbulence models, Gaussian

closures are assumed [4]. They lead to local diffusion operators with diffusion coefficients derived in terms of

the plasma turbulence parameters. This closure cannot work in the case of Levy statistics for the particles.

The class of operators that should describe the macroscopic transport should have solutions of the Levy

type distributions. Fractional derivative operators verify this constraint. Therefore, we expect that the

particle distribution function obeys fractional kinetics [5,10]. Under this assumption, a generic macroscopic

function such as the particle density, nðx; tÞ; may be the solution of a partial differential equation of

fractional order. Here we consider a simple form for such transport equations

on
ot

¼ F ðx; nÞ þ vDa nðx; tÞ½ � nð0; tÞ�; t > 0; x > 0: ð1Þ

This equation is derived asymptotically from basic random walk models in [11]. In Eq. (1), Da is a fractional

derivative operator, which (following [12]) is defined as

Daðf Þ ¼ 1

Cðm� aÞ
om

oxm

Z x

0

f ðyÞ
ðx� yÞa�mþ1

dy; ð2Þ

where a > 0 and m is an integer such that m > a > m� 1. The function F is either a given source term or a

reaction term expressed as a nonlinear function of n. The transport coefficient v is taken to be a constant.

As is clear from Eq. (1), in this paper we only consider fractional derivatives in space. In this case, there is a

simple relation between the m exponent and the index a, a ¼ 1=m. Therefore for the problems considered
here, the index a should be in the range 16 a6 2 and m ¼ 2.

Although there are several numerical methods developed to solve differential equations of fractional

order [12–15], there is little information on the numerical solution of partial differential equations of

fractional order. Here, we consider two time evolution methods and two different discretizations of the

fractional derivative operator. The efficiency and accuracy of these schemes is analyzed.

The rest of this paper is organized as follows. In Section 2, two discretization methods for the fractional

derivative operators are introduced. In Section 3 we describe the numerical schemes used in solving Eq. (1).

In Section 4 the numerical test and solutions of the transport equilibrium equation are given and two more
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problems are examined. In Section 5 a pulse evolution problem is considered and in Section 6 a reaction-

fractional-diffusion equation is discussed. Finally, the conclusions of this paper are given in Section 7.
2. Discretization of the fractional derivatives

In solving Eq. (1), the space variable x is defined as a unit length interval, x 2 ½0; 1�. In this interval, we set

up a grid of N points and define D ¼ 1=N . The first step towards a solution is to discretize the fractional

derivative. Here, we follow the method given in [12]. First, it is useful to write explicitly the singular terms in

the integral Equation (2) and write the fractional derivative in the following way [12]:

Daðf Þ ¼ f ð0Þ
Cð1� aÞ x

�a þ f 0ð0Þ
Cð2� aÞ x

1�a þ 1

Cð2� aÞ

Z x

0

f 00ðyÞdy
ðx� yÞa�1

: ð3Þ

For our problem, we keep explicit the two first terms because they are directly determined by boundary

conditions. The second step in the discretization is to write the integral in Eq. (3) as a sum of integrals.

That is,Z x

0

f 00ðyÞdy
ðx� yÞa�1

¼
Xi�1

j¼0

Z xjþ1

xj

f 00ðx� yÞ
ya�1

dy: ð4Þ

In [12], each integral in the sum is discretized the following way:Z xjþ1

xj

f 00ðx� yÞ
ya�1

dy � f ðx� xjþ1Þ þ f ðx� xj�1Þ � 2f ðx� xjÞ
D2

Z xjþ1

xj

dy
ya�1

: ð5Þ

As it is clear from Eq. (5), the second derivative is evaluated at position xj. There are obvious alternative

ways of evaluating this derivative as we discuss later in this paper. In [12], this discretization method is

called the L2 method. We keep the same notation here. Just from integrating over y in Eq. (5) and

substituting back in Eq. (3), we obtain

Daðf Þi ¼
f ð0Þ

Cð1� aÞ x
�a
i þ f 0ð0Þ

Cð2� aÞ x
1�a
i þ 1

Cð3� aÞDa

Xi�1

j¼0

ðj
h

þ 1Þ2�a � j2�a
i
ðfi�jþ1 þ fi�j�1 � 2fi�jÞ:

ð6Þ

Here, the subindex i refers to the space position xi where the derivative is taken and fk � f ðkDÞ. We can

now reorganize the sum and write the fractional derivative in the form

Daðf Þi ¼
f ð0Þ

Cð1� aÞ x
�a
i þ f 0ð0Þ

Cð2� aÞ x
1�a
i þ

Xi

j¼�1

WjðaÞfi�j: ð7Þ

In Eq. (7), the weights WjðaÞ are

Wj ¼ ðjþ2Þ2�a�3ðjþ1Þ2�aþ3j2�a�ðj�1Þ2�a

DaCð3�aÞ ; 16 j6 i� 2;

W�1 ¼ 1=ðDaCð3� aÞÞ;
W0 ¼ ð22�a � 3Þ=ðDaCð3� aÞÞ;
Wi�1ðaÞ ¼ �2i2�aþ3ði�1Þ2�a�ði�2Þ2�a

DaCð3�aÞ ;

WiðaÞ ¼ i2�a�ði�1Þ2�a

a :

8>>>>>><
>>>>>>:

ð8Þ
D Cð3�aÞ
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In the limit a ¼ 2, the Da operator becomes a second derivative corresponding to normal diffusion. The only

weights that are non-zero are

W�1 ¼
1

D2
; W0 ¼ � 2

D2
; W1 ¼

1

D2
: ð9Þ

They correspond to the D2-accurate discretization of a second order derivative. There is a qualitative

difference between the a ¼ 2 case and the non-integer a�s. In the later case all grid points with j < i are
coupled through the sum in Eq. (7), although the strength of the coupling decreases with increasing distance

between xi and xj. This decrease of the weights is illustrated in Fig. 1, where we have plotted the weights for

a case with a ¼ 3=2.
In the limit a ¼ 1, the numerical representation of the first order derivative using the L2 scheme is a

backward two-point derivative. This implies that the derivative is accurate to order D for a ¼ 1. Therefore,

the accuracy of this discretization method depends on the value of a. Since this discretization might not be

accurate enough for a near 1, a variant of the method of discretization developed by [12] was developed. To

do so, let us go back to Eq. (5) and evaluate the integral in a more symmetric form. We use a four-point
discretization of the second derivative in the integrand and we obtainZ xjþ1

xj

f 00ðx� yÞ
ya�1

dy � f ðx� xjþ2Þ � f ðx� xjþ1Þ þ f ðx� xj�1Þ � f ðx� xjÞ
2D2

Z xjþ1

xj

dy
ya�1

: ð10Þ

Then doing the same manipulations as before, we reach an expression analogous to Eq. (7)

Daðf Þi ¼
f ð0Þ

Cð1� aÞ x
�a
i þ f 0ð0Þ

Cð2� aÞ x
1�a
i þ

Xiþ1

j¼�1

ŴWjðaÞfi�j; ð11Þ

where the new weights are

ŴW�1ðaÞ ¼ 1
2DaCð3�aÞ ;

ŴW0ðaÞ ¼ 22�a�2
2DaCð3�aÞ ;

ŴW1ðaÞ ¼ 32�a�23�a

2DaCð3�aÞ ;

ŴWjðaÞ ¼ ðjþ2Þ2�a�2ðjþ1Þ2�aþ2ðj�1Þ2�a�ðj�2Þ2�a

2DaCð3�aÞ ; 1 < j6 i� 2;

ŴWi�1ðaÞ ¼ �i2�a�ði�3Þ2�aþ2ði�2Þ2�a

2DaCð3�aÞ ;

ŴWiðaÞ ¼ �i2�aþ2ði�1Þ2�a�ði�2Þ2�a

2DaCð3�aÞ ;

ŴWiþ1ðaÞ ¼ i2�a�ði�1Þ2�a

2DaCð3�aÞ :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð12Þ

Note that one problem in this new scheme is that it requires knowing f�1. However, this is not a problem

for the problems considered here, because we always use zero derivative boundary conditions at the origin.

Therefore, f�1 ¼ f1. We call this discretization method L2C.
It is interesting to compare the two discretization methods in the limit when a is an integer. For a ¼ 1,

the L2 method gives

of
ox

����
i

¼ fiþ1 � fi
D

: ð13Þ

This is a forward derivative, with a numerical error of the order D. The L2C method gives

df
dx

����
i

¼ fiþ1 � fi�1

2D
: ð14Þ
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Fig. 1. L2 weights for a ¼ 3=2 and n ¼ 400.
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That is the centered derivative with a discretization error of order of D2. On the other hand, in the limit

a ¼ 2, the L2 method gives

d2f
dx2

����
i

¼ fiþ1 þ fi�1 � 2fi
D2

: ð15Þ

This is a centered derivative with an error of the order of D2. The L2C method gives

d2f
dx2

����
i

¼ fiþ1 þ fi�2 � fi � fi�1

2D2
ð16Þ

with an accuracy of the order D. Therefore, the L2 method is more accurate than the L2C method for a ¼ 2,

but the reverse happens for a ¼ 1. We can expect these methods to be useful in different ranges of a.
3. Numerical schemes

The range of independent variables is restricted to 06 x6 1, tP 0. The initial condition, nðx; 0Þ, is given
in functional form with each type example in the paper. In solving Eq. (1), we take as boundary con-

ditions nxð0; tÞ ¼ 0, nð1; tÞ ¼ 0. The first boundary conditions removes one of the singular terms in the

fractional derivative, Eq. (3), as we discuss below. These boundary condition are used in all the examples

in the paper, except the second boundary condition is different for solutions of the reaction-fractional-

diffusion equation propagating from right to left. For these calculations since the initial condition is
nð1; 0Þ ¼ 1, we use nxð1; tÞ ¼ 0 as the edge boundary condition. In Eq. (1), we consider the fractional

derivative of the function f ðx; tÞ ¼ nðx; tÞ � nð0; tÞ. This removes the other singular term in the fractional

derivative.

We have considered two numerical schemes for time advancing Eq. (1). One is a simple explicit scheme

and the second one is semi-implicit. The explicit scheme can be written in the following way:

ntþDt
i ¼ nti þ Dt v

Xj¼i

j¼�1

Wjðnti�j

"
� nt0Þ þ F ðxi; ntiÞ

#
: ð17Þ



Table 1

0 1 2 3 4

0 1� kW0 � kjW1 �kW�1 þ 2�akjW1 0 0 0

1 �kW1 1� kW0 �kW�1 0 0

2 0 �kW1 1� kW0 �kW�1 0

3 0 0 �kW1 1� kW0 �kW�1

4 0 0 0 �kW1 1� kW0
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Here, the weights Wj are either the ones of the L2 method or the L2C method. The value of n at i ¼ 0 is

advanced in time using the boundary condition of zero first derivative at the origin. Doing an expansion of

the solution near the origin, we have

nðdÞ ¼ nð0Þ þ n0ð0Þdþ nad
a: ð18Þ

Applying this expansion to the two first points in the grid and setting the first derivative to zero, we have

ntþDt
0 ¼ ntþDt

1 � 2�antþDt
2

1� 2�a
: ð19Þ

The weights are stored at the beginning of each calculation so they will not have to be calculated each

time a fractional derivative is needed. Initially j2�a is stored in an array and each weight is calculated using

this array. This reduced the time taken for the calculations by a factor of 19 for the case of N ¼ 2000.

To be able to have a more efficient numerical scheme, we have also developed a semi-implicit scheme, by

extracting the elements in the expansion in Eq. (17) that form a tridiagonal matrix and using them in the
time advanced part of the equation. We can write the semi-implicit scheme in the following way:

ntþDt
i � Dtv W1ntþDt

i�1

�
þ W0ntþDt

i þ W�1ntþDt
iþ1

�
¼ nti þ Dt v

Xi

j¼2

Wjðnti�j

"
� nt0Þ � vðW�1 þ W0 þ W1Þnt0 þ F ðxi; ntiÞ

#
: ð20Þ

Using Eq. (19), the term ntþDt
0 in the left-hand side can be calculated in terms of the values of the density

in the first two grid points. In this way, we have a tridiagonal matrix on the left-hand side. Table 1 shows

the upper left hand corner of this matrix.

In Table 1, k � Dtv and j � ð1� 2�aÞ�1
. The weights for the semi-implicit scheme are the same as for the

explicit scheme, namely, either (8) or (12).

The tridiagonal matrix is inverted by using the Thomas Algorithm of LU decomposition for tridiagonal

systems [16].
Variants of these two schemes that are Dt2 accurate have also been implemented. They consist of a two-

step process. In the first step, the density is advanced to time t þ Dt=2. This density is then used to calculate

the right-hand side for the full time step advance.
4. Numerical tests using an analytic model for the equilibrium transport equation

To test the numerical schemes, it is important to use simple analytical models. For that purpose, we first
consider the case of evolution of a density profile to an equilibrium solution. The equilibrium density profile

is the solution of the equation,

SðxÞ þ vDaðn� n0Þ ¼ 0: ð21Þ
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Here, SðxÞ is a given source function and v is a constant transport coefficient that we take to be 1. In order

to have a simple solution of the equilibrium equation, we use a simple form for the source function,

SðxÞ ¼ 1� x2�a, In this case, Eq. (21) can be analytically solved for any value of a > 1 and the solution for

the density function is

nðxÞ ¼ 1� xa

Cð1þ aÞ �
Cð3� aÞ

2
ð1� x2Þ: ð22Þ

If now we go back to Eq. (1) with F ¼ SðxÞ, for a given initial condition, nðx; 0Þ, not too far from

the equilibrium density profile in Eq. (22), the density evolves towards this equilibrium solution. We

calculate nðx; 0Þ ¼ �D�aðSðxÞ=vÞ þ aþ bx, choosing a and b so that the initial condition satisfies the
boundary conditions. We have studied this evolution for different values of a and determined the as-

ymptotic solution for large t. Having an analytical solution has also allowed us to determine the nu-

merical error for the different numerical discretizations and time evolution schemes. We calculate the

error as

dn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼0

½nnðxiÞ � nðxiÞ�2

PN
i¼0

nðxiÞ2

vuuuuuut ; ð23Þ

where nn is the numerical solution in the large t regime when we find that the calculation has converged to a

steady state and nðxÞ is given by Eq. (22).
The calculated error for a case with a ¼ 3=2 and N ¼ 400 is 0.00148 for both the explicit and semi-

implicit methods for small Dt. The calculations were stopped when the solutions reached steady state for all

values of a. There is a stability limit, Dt < Da=v, on the time step that can be used with the explicit scheme.

For this case, the maximum step is Dt ¼ 5� 10�5 which is below the stability limit of 1.25� 10�4. The semi-

implicit method allows us to use larger time steps without a large increase in the errors. Time steps of the

order of Dt ¼ 1 can be used without loss of accuracy.

The number of operations in the right-hand side of Eqs. (17) and (20) for both numerical schemes is very

large because all grid points are coupled. Therefore, the relative increase of overhead operations in the semi-
implicit method is relatively small. The time taken by the code for the same step size of 10�5 going to t ¼ 10

increases from 41.05 min for the explicit to 42.21 min for the semi-implicit. Of course, increasing the time

step, the time taken for the calculation is reduced by a factor inversely proportional to the step size.

Therefore, the semi-implicit scheme leads to considerably faster results.

We also tested the accuracy of the L2 and L2C discretization methods. We use the semi-implicit method

for a grid of N ¼ 400 points and a time step Dt ¼ 2� 10�6 to ensure accuracy for all values of a. In Fig. 2,

we have plotted the error as a function of a for a scan varying a between 1 and 2. The results are consistent

with the discussion at the end of Section 2. For a <� 1:2, the L2C scheme has a smaller error than the L2.
For a >� 1:6, the L2 scheme has a smaller error than the L2C. In the intermediate region, both methods

lead to similar results.

The L2 and L2C methods have similar results with all grid sizes tested. Table 2 shows the results of

changing the grid by factors of two from N ¼ 100 to N ¼ 3200 for three values of a with Dt ¼ 2 10�6. For

a ¼ 1:1, the L2C scheme has a smaller error than the L2 for all grid sizes. For a ¼ 1:9, the L2 scheme has a

smaller error than the L2C for all grid sizes where the time step is below the stability limit. Errors from the

two largest grids were omitted from the table for a ¼ 1:9 because the time step used is above the stability

limit for those grid sizes. For a ¼ 1:5, the L2 scheme has a slightly smaller error than the L2C for grids
below N ¼ 800, but the largest grids have a smaller error with the L2C method.



Table 2

N a dn(L2) dn(L2C)

100 1.1 0.0099700 0.0021538

200 1.1 0.0050403 0.0010675

400 1.1 0.0025800 0.00049200

800 1.1 0.0013526 0.00019806

1600 1.1 0.00073861 6.3133e) 05

3200 1.1 0.00043167 6.1263e) 05

100 1.5 0.0044301 0.0082408

200 1.5 0.0025417 0.0040501

400 1.5 0.0014769 0.0019081

800 1.5 0.00089989 0.00082656

1600 1.5 0.00059500 0.00028872

3200 1.5 0.00043642 7.0800e) 05

100 1.9 0.0059026 0.016662

200 1.9 0.0024905 0.0086793

400 1.9 0.00092500 0.0042800

800 1.9 0.00023665 0.0012937

10-5

10-4

10-3

10-2

1 1.2 1.4 1.6 1.8 2

L2

L2C

δ n

α
Fig. 2. Error as calculated by Eq. (23) for L2 and L2C methods for N ¼ 400 and Dt ¼ 2� 10�6 as a function of a.
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The rate of convergence of the solution depends on both D and Dt. Tables 3 and 4 show the error as a

function of time for calculations varying Dt three orders of magnitude for a ¼ 1:5 and N ¼ 400. For this

grid size, the error of the converged solution is less for the L2 method shown in Table 3 than for the L2C

shown in Table 4, but both methods converge at approximately the same time.
5. Time evolution of a pulse

Let us consider another problem, the time evolution of a pulse in a system governed by Eq. (1). For this

problem, the basic equation to be solved is a linear equation without source term

on
ot

¼ vDa½nðx; tÞ � nð0; tÞ� ð24Þ



Table 4

t dn(Dt ¼ 2� 10�6, L2C) dn(Dt ¼ 2� 10�5, L2C) dn(Dt ¼ 2� 10�4, L2C) dn(Dt ¼ 2� 10�3, L2C)

1. 0.0022849 0.0023289 0.0027439 0.0041704

2. 0.0019542 0.0019655 0.0021345 0.0036145

3. 0.0019138 0.0019160 0.0019695 0.0031835

4. 0.0019088 0.0019092 0.0019248 0.0028592

5. 0.0019082 0.0019083 0.0019127 0.0026171

6. 0.0019081 0.0019082 0.0019094 0.0024366

7. 0.0019081 0.0019081 0.0019085 0.0023021

8. 0.0019081 0.0019081 0.0019082 0.0022019

9. 0.0019081 0.0019081 0.0019082 0.0021272

10. 0.0019081 0.0019081 0.0019081 0.0020715

Table 3

t dn(Dt ¼ 2� 10�6, L2) dn(Dt ¼ 2� 10�5, L2) dn(Dt ¼ 2� 10�4, L2) dn(Dt ¼ 2� 10�3, L2)

1. 0.00073504 0.00071151 0.00049513 0.0016257

2. 0.0013838 0.0013773 0.0013013 0.00034482

3. 0.0014655 0.0014643 0.0014474 0.00083649

4. 0.0014755 0.0014753 0.0014719 0.0011701

5. 0.0014767 0.0014767 0.0014761 0.0013315

6. 0.0014769 0.0014769 0.0014768 0.0014082

7. 0.0014769 0.0014769 0.0014769 0.0014445

8. 0.0014769 0.0014769 0.0014769 0.0014616

9. 0.0014769 0.0014769 0.0014769 0.0014697

10. 0.0014769 0.0014769 0.0014769 0.0014735
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with the initial condition that is localized in x space. Depending on the value of a, the evolution of the pulse

is a combination of a decay and advection of this pulse. In the case a ¼ 1, the problem is pure advection and

Eq. (24) is just

on
ot

¼ v
on
ox

: ð25Þ

The general solution of this equation is nðx; tÞ ¼ n0ðxþ vtÞ. That is, the initial pulse, whatever shape it has,
moves inward at a constant velocity v without changing its shape. In the numerical calculations, we use a

Gaussian pulse as an initial condition centered at x0 ¼ 0:5 with a given width W , nðx; 0Þ ¼ exp½�ðx� x0Þ2=
ð2W Þ�. Since the general solution of Eq. (25) is just a shifted Gaussian, the value at the peak of the pulse

should be constant in time. In the calculations presented here, we have used an initial width W ¼ 0:1 and a
transport coefficient v ¼ 0:05. In Fig. 3, we have plotted, as a function of time, the maximum value of n for

three different numbers of spatial grid points and the two numerical schemes.

For both numerical schemes, as we increase the number of grid points, the time step must decrease in

order to verify Dt6D=v. Using the L2 method, there is a serious accuracy problem, the maximum value of

the pulse decreases as it moves out. The decay rate, caused by numerical diffusion, is significant and de-

pends linearly with D (the system is only D accurate). To reduce the error to an acceptable value (a few

percents during the motion out of the box), it is necessary to use 104 points. This makes the calculations

impossibly slow. However, the L2C method, D2 accurate, gives very accurate results for all the grid sizes
considered. In Fig. 3, the effect of the change in grid is hardly visible because all curves are close each other.

Although with the L2 method there is strong distortion of the pulse, the propagation velocity of the pulse is

equally accurate using either discretization method.
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For 1 < a6 2, Eq. (24) can be solved [17] in an infinite domain and the solution for an initial condition

of the form nðx; 0Þ ¼ dðxÞ is

nðx; tÞ ¼ 1

ðvtÞ1=a
U

x

ðvtÞ1=a

" #
ð26Þ

with

UðfÞ ¼ 1

p

Z 1

0

cos sin
ap
2

� �
ka

h
þ kf

i
exp cos

ap
2

� �
ka

h i
dk: ð27Þ

For a well-localized initial condition and for times short enough that the effects of the boundaries are not

affecting the solution, we can expect that Eq. (26) gives a good representation of the numerical result. The

self-similar property reflected in Eq. (26) can then be used as a measure of the accuracy of the solution. A

way of visualizing the accuracy of the solution is plotting ðvtÞ1=anðx; tÞ versus x=ðvtÞ1=a at different times

within the time interval of self-similar evolution; we should obtain a single curve.

We have carried the calculation of the evolution of a pulse starting from a Gaussian function centered at

x ¼ 0:5 and with a width W ¼ 0:03. We have used the semi-implicit numerical scheme with the L2 dis-
cretization. The self-similarity of the solution is shown in Fig. 4 for a ¼ 2 and for a ¼ 1:999. In this figure,

we have plotted a sequence of solutions at different times. We can see that all curves collapse on a single one

showing that the solutions verify the self-similarity property.

Let us now consider a case with a away from the integer values, for instance a ¼ 1:5. Using v ¼ 1,

W ¼ 0:002, and N ¼ 1000, we compare in Fig. 5 the numerical solution to the analytical one for different

times during the evolution. We can see that the agreement for the bulk of the solution is very good. In this

figure it is difficult to see the agreement on the tails. To have a more quantitative comparison and in order

to test the two discretization methods, we will calculate the error, as given by Eq. (23), for several times
during the calculation. The error has been calculated over the range 0:36 x6 0:7 to avoid possible dis-

tortion of the estimate by the effects of the boundary. This calculated error for the L2 and L2C methods is

plotted in Fig. 6 versus a for the maximum time, t ¼ 100W a. Again we reach the same conclusion as in the

previous section. For a < 3=2, the L2C method is more accurate than the L2 and the reverse for a > 3=2.



0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1

0.005
0.0185
0.0365
0.058
0.005 (L2)
0.0185 (L2)
0.0365 (L2)
0.0585 (L2)

n
( x

)

x

Fig. 5. Comparison of n from Eq. (26) with the L2 method at different times for a ¼ 1:5, N ¼ 1000 and v ¼ 0:0005.

Fig. 4. Self-similarity of n profiles near a ¼ 2.
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By choosing the more accurate method in each range of a, we can obtain accurate results for the pulse decay

problem.
6. Reaction-fractional-diffusion equations

In the previous sections, we have been concerned with the accuracy of the solutions from integration of
the linear partial differential equation of fractional order. Here we will consider an example of a nonlinear

partial differential equation of fractional order. We have investigated the combined effects of time step and

space grid resolution for the case of the reaction-fractional-diffusion equations. That is,
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on
ot

¼ cnð1� nÞ þ vDa½nðx; tÞ � nð0; tÞ�: ð28Þ

For a ¼ 2, this equation is the Fisher–Kolmogorov equation [18]. The generalization of Fisher–Kol-

mogorov equation to fractional spatial derivatives has been studied in [17], here we concentrate on the

accuracy of its numerical integration.

The Fisher–Kolmogorov equation has front propagating solutions. These solutions are self-similar so-

lutions of the form n ðxþ ctÞ, where c is the velocity of the front. We can plot the solution at different times

and shift the x-scale by x ! xþ ct, where c is the velocity of the front. The solutions will appear to be a

single curve.

The generalized Fisher–Kolmogorov equation also has propagation solutions. However, their properties
depend on the direction of propagation. This is not surprising because the fractional operator is intrinsi-

cally asymmetric in x-space. Solutions propagating from left to right have a complicated behavior and strict

self-similarity is not maintained. The properties of these front solutions are discussed in [17]. However,

solutions propagating from right to left have sharp fronts with exponentially decaying tails and they

propagate in a self-similar manner. Therefore, we consider the latter type of fronts for our numerical

studies.

If self-similar propagating solutions exist, we can transform Eq. (28) into a differential equation of

fractional order by changing variables, y ¼ xþ ct, and we have

c
dn
dy

¼ cnð1� nÞ þ vDa½nðyÞ � nð0Þ�: ð29Þ

For fronts decaying exponentially, we can apply the leading edge approximation [18] and solve Eq. (29).

This solution allows us to determine the minimum velocity of the front solution [18]. This minimal velocity
is,

cmin ¼
ac

a� 1
ða

�
� 1Þ v

c

�1=a
: ð30Þ

For a ¼ 2, Eq. (30) recovers the result for the Fisher–Kolmogorov equation, cmin ¼ 2
ffiffiffiffiffi
cv

p
.

As in the case of the Fisher–Kolmogorov equation, and for initial conditions with a width of the front

smaller than the width for the minimal propagation velocity solution, Wmin ¼ ½ða� 1Þv=c�1=a, the right to left
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propagating fronts do so at a velocity very close to the minimal velocity. We will use the determination of

the velocity of the front as a way of calculating the accuracy of the discretization methods and of the semi-

implicit numerical scheme. We measure this velocity c by a linear fit to the position of the n ¼ 0:5 as a
function of time.

In the numerical calculations, we use as initial condition

nðx; 0Þ ¼ 1

2
1

	
þ tanh

x� 0:9

2W


 ��
: ð31Þ

To have a sharp enough front during the evolution, we have used a small value for the transport coefficient,

v ¼ 5� 10�4, and c ¼ 1=3. This gives a velocity cmin ¼ 0:0258. After a short transient, the shape of the front

is established and it propagates at a constant velocity.

For a ¼ 1:9 and using the L2 discretization method, we have calculated the velocity of the front, moving

from right to left, for a variety of values of the time step and grid sizes. The results are shown in Fig. 7. At

first look, the results are surprising. For low spatial resolution, D large, we get values of the velocity, which

are fairly independent of the grid and close to 0.020. As we increase the spatial resolution with constant
time step, we reach a point at which the value of the velocity begins to diverge. The reason is that the time

step becomes large for the spatial resolution given the velocity of propagation of the information. The

important parameter in these numerical studies is g � Da=vDt. This parameter must be greater than one to

get effective transmission of information. We can see that when we plot all the results in Fig. 7 as a function

of only one parameter, g, they collapse onto a single curve as shown in Fig. 8.

The value of c as a function of the numerical parameter g is well described by a function of the form

c ¼ ĉc
1þ k=g

: ð32Þ

For the particular case shown in Fig. 8, k ¼ 0:0284 and ĉc ¼ 0:020. ĉc is the numerically converged value of

the velocity in the limit of infinite space-time resolution. This result indicates that the calculation of the

front velocity is accurate and well converged within an error of order e when the time step verifies the

condition Dt < ðeDaÞ=ðkvÞ.
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Fig. 7. Velocity of front as a function of D for different Dt.
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We can now repeat the same calculation for the L2C method. We have used different values for the time

step and grid size covering a similar range of values as before. There is also a unique curve summarizing all

the values of the calculated velocity that can be fitted by Eq. (32). The results and the fit are shown in Fig. 9.

In this case, k ¼ 0:416 and ĉc ¼ 0:019.
The converged value of the velocity for the L2C method is about a 5% lower than the converged velocity

with the L2 method. However, the most dramatic result is that the restriction on time step is a factor of 20

higher for the L2C method than for the L2, at least for this value of a. Therefore, also in the case of re-
action-fractional-diffusion equations, at a ¼ 1:9 the L2 method is more efficient than the L2C method,

because, to achieve the same accuracy, we need a time step ten times lower for the L2C than for the L2.

Let us now consider the case of front propagation near a ¼ 1. For a ¼ 1:1, v ¼ 5� 10�3, and c ¼ 1=3, let
us consider the time evolution of the front. Two calculations for the L2 and L2C method are performed
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with the semi-implicit scheme for the same parameters with a time step Dt ¼ 0:001 and N ¼ 400. For the L2

method, the front propagates in a self-similar manner with a velocity of 0.0104. The L2C method gives a

velocity of 0.117. Using Eq. (30), the velocity from the analytical model for a ¼ 1:1 is 0.009933. The
evolution of the front is somewhat faster for the L2 method, while the L2C gives a more accurate answer. In

any case, the difference in velocity between the L2 and L2C methods is small.

The self-similarity of the front is maintained very accurately in both calculations. In Figs. 10 and 11, we

have plotted the self-similarity of the L2 and L2C methods respectively. After the fast initial readjustment

at t ¼ 1, it is impossible to distinguish between the curves at different times. The self-similarity is maintained

for both methods until the front reaches the origin.
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Fig. 10. Self-similarity of front at different times for v ¼ 5� 10�3, and c ¼ 1=3 for the L2 scheme.
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7. Conclusions

We have considered a simple transport problem with anomalous diffusion modeled by a partial differ-

ential equation of fractional order a and studied two different numerical schemes for solving the equation

and two different discretization methods for the fractional operators. We have applied these methods to

three different types of problem. We found that efficient and accurate calculations are possible by choosing

the proper numerical approach.

The semi-implicit method is more effective than the explicit method of numerically advancing the
equation. With the former, larger time steps are always possible than the latter. However, constraints on the

time step must be imposed to maintain the accuracy of the semi-implicit method.

Two discretization methods of the fractional derivative operators have been considered. Over this range

of problems, the L2 method is the most accurate for a > 1:5 and the L2C method is the most accurate for

a < 1:5. Around a ¼ 1:5 both methods have similar accuracy.

Therefore, using the semi-implicit method and switching discretization methods around a ¼ 1:5, we
obtain optimal results for stability, efficiency, and accuracy of the numerical scheme.
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